Abstract

Human A, B, and O erythrocytes (RBC) were agglutinated by many human strains of Actinomyces viscosus and A. naeslundii. At 37 degrees C, these bacterium-mediated hemagglutination reactions required the action of bacterial neuraminidase upon the RBC; however, at 4 degrees C, the requirement for neuraminidase was not as striking. Bacterial cell suspensions which caused hemagglutination at 37 degrees C contained both soluble extracellular and cell-associated neuraminidase activities as shown by enzyme assays using a soluble substrate (i.e., alpha 1-acid glycoprotein). Bacterium-mediated hemagglutination occurred only in the presence of soluble neuraminidase activity, and the rate of hemagglutination could be inhibited by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, a competitive inhibitor of purified soluble neuraminidase from A. viscosus T14V. Suspensions of bacteria which contained only cell-associated neuraminidase activity were unable to initiate hemagglutination, but they caused immediate hemagglutination when mixed with neuraminidase-treated RBC. All hemagglutination reactions were reversible in the presence of 0.02 M lactose and were abolished by heating (85 degrees C for 30 min) the actinomycete cells but not the RBC. The proposed mechanism of hemagglutination involves two sequential steps: (i) the action of neuraminidase to unmask galactose-containing receptors on the RBC and (ii) the multivalent binding of these receptors by many low-affinity lection sites on the bacterial surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.