Abstract
This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dynamic signal is constructed to deal with the design difficulties in the unmodeled dynamics. Moreover, to reduce the communication burden, we propose an event-triggered strategy with a varying threshold. Based on the Lyapunov function method and adaptive neural control approach, a novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader's output and ensures that all signals are bounded in the closed-loop system. An illustrative simulation example is applied to verify the usefulness of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.