Abstract

This paper focuses on the problem of neural-network-based decentralized adaptive output-feedback control for a class of nonlinear strict-feedback large-scale stochastic systems. The dynamic surface control technique is used to avoid the explosion of computational complexity in the backstepping design process. A novel direct adaptive neural network approximation method is proposed to approximate the unknown and desired control input signals instead of the unknown nonlinear functions. It is shown that the designed controller can guarantee all the signals in the closed-loop system to be semiglobally uniformly ultimately bounded in a mean square. Simulation results are provided to demonstrate the effectiveness of the developed control design approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.