Abstract

Neural network quantum states (NQS) have been widely applied to spin-1/2 systems, where they have proven to be highly effective. The application to systems with larger on-site dimension, such as spin-1 or bosonic systems, has been explored less and predominantly using spin-1/2 Restricted Boltzmann Machines (RBMs) with a one-hot/unary encoding. Here, we propose a more direct generalization of RBMs for spin-1 that retains the key properties of the standard spin-1/2 RBM, specifically trivial product states representations, labeling freedom for the visible variables and gauge equivalence to the tensor network formulation. To test this new approach, we present variational Monte Carlo (VMC) calculations for the spin-1 anti-ferromagnetic Heisenberg (AFH) model and benchmark it against the one-hot/unary encoded RBM demonstrating that it achieves the same accuracy with substantially fewer variational parameters. Furthermore, we investigate how the hidden unit complexity of NQS depend on the local single-spin basis used. Exploiting the tensor network version of our RBM we construct an analytic NQS representation of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state in the spin-1 basis using only hidden units, compared to required in the basis. Additional VMC calculations provide strong evidence that the AKLT state in fact possesses an exact compact NQS representation in the basis with only hidden units. These insights help to further unravel how to most effectively adapt the NQS framework for more complex quantum systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.