Abstract
This study considers an adaptive neural-network (NN) periodic event-triggered control (PETC) problem for switched nonlinear systems (SNSs). In the system, only the system output is available at sampling instants. A novel adaptive law and a state observer are constructed by using only the sampled system output. A new output-feedback adaptive NN PETC strategy is developed to reduce the usage of communication resources; it includes a controller that only uses event-sampling information and an event-triggering mechanism (ETM) that is only intermittently monitored at sampling instants. The proposed adaptive NN PETC strategy does not need restrictions on nonlinear functions reported in some previous studies. It is proven that all states of the closed-loop system (CLS) are semiglobally uniformly ultimately bounded (SGUUB) under arbitrary switchings by choosing an allowable sampling period. Finally, the proposed scheme is applied to a continuous stirred tank reactor (CSTR) system and a numerical example to verify its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.