Abstract

Patient-ventilator asynchrony is very common in newborns. Achieving synchrony is quite challenging because of small tidal volumes, high respiratory rates, and the presence of leaks. Leaks also cause unreliable monitoring of respiratory metrics. In addition, ventilator adjustment must take into account that infants have strong vagal reflexes and demonstrate central apnea and periodic breathing, with a high variability in breathing pattern. Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation whereby the timing and amount of ventilatory assist is controlled by the patient's own neural respiratory drive. As NAVA uses the diaphragm electrical activity (Edi) as the controller signal, it is possible to deliver synchronized assist, both invasively and noninvasively (NIV-NAVA), to follow the variability in breathing pattern, and to monitor patient respiratory drive, independent of leaks. This article provides an updated review of the physiology and the scientific literature pertaining to the use of NAVA in children (neonatal and pediatric age groups). Both the invasive NAVA and NIV-NAVA publications since 2016 are summarized, as well as the use of Edi monitoring. Overall, the use of NAVA and Edi monitoring is feasible and safe. Compared with conventional ventilation, NAVA improves patient-ventilator interaction, provides lower peak inspiratory pressure, and lowers oxygen requirements. Evidence from several studies suggests improved comfort, less sedation requirements, less apnea, and some trends toward reduced length of stay and more successful extubation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.