Abstract

Various vague and unstructured problems encountered the civil engineering/designers that persuaded by their experiences. One of these problems is the structural failure of the reinforced concrete (RC) building determination. Typically, using the traditional Limit state method is time consuming and complex in designing structures that are optimized in terms of one/many parameters. Recent research has revealed the Artificial Neural Networks potentiality in solving various real life problems. Thus, the current work employed the Multilayer Perceptron Feed-Forward Network (MLP-FFN) classifier to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. In order to evaluate the proposed method performance, a database of 257 multistoried buildings RC structures has been constructed by professional engineers, from which 150 RC structures were used. From the structural design, fifteen features have been extracted, where nine features of them have been selected to perform the classification process. Various performance measures have been calculated to evaluate the proposed model. The experimental results established satisfactory performance of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.