Abstract

Progression of neurulation in the chick embryo has not been well documented. To provide a detailed description, chick embryos were stained in ovo after the least manipulation possible to avoid distortion of the neural plate and folds. This allowed a morphological and morphometric description of the process of neurulation in relatively undisturbed chick embryos. Neurulation comprises several specific phases with distinct closure patterns and closure rates. The first closure event occurs, de novo, in the future mesencephalon at the 4-6 somite stage (sst 4-6). Soon afterwards, at sst 6-7, de novo closure is seen at the rhombocervical level in the form of multisite contacts of the neural folds. These contacts occur in register with the somites, suggesting that the somites may play a role in forcing elevation and apposition of the neural folds. The mesencephalic] and rhombocervical closure events define an intervening rhombencephalic neuropore, which is present for a brief period before it closes. The remaining pear-shaped posterior neuropore (PNP) narrows and displaces caudally, but its length remains constant in embryos with seven to ten somites, indicating that the caudal extension of the rhombocervical closure point and elongation of the caudal neural plate are keeping pace with each other. From sst 10 onward, the tapered cranial portion of the PNP closes fast in a zipper-like manner, and, subsequently, the wide caudal portion of the PNP closes rapidly as a result of the parallel alignment of its folds, with numerous button-like temporary contact points. A role for convergent extension in this closure event is suggested. The final remnant of the PNP closes at sst 18. Thus, as in mammals, chick neurulation involves multisite closure and probably results form several different development mechanisms at varying levels of the body axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call