Abstract

We present a neural network framework for learning a survival model to predict a time-to-event outcome while simultaneously learning a topic model that reveals feature relationships. In particular, we model each subject as a distribution over “topics”, where a topic could, for instance, correspond to an age group, a disorder, or a disease. The presence of a topic in a subject means that specific clinical features are more likely to appear for the subject. Topics encode information about related features and are learned in a supervised manner to predict a time-to-event outcome. Our framework supports combining many different topic and survival models; training the resulting joint survival-topic model readily scales to large datasets using standard neural net optimizers with minibatch gradient descent. For example, a special case is to combine LDA with a Cox model, in which case a subject’s distribution over topics serves as the input feature vector to the Cox model. We explain how to address practical implementation issues that arise when applying these neural survival-supervised topic models to clinical data, including how to visualize results to assist clinical interpretation. We study the effectiveness of our proposed framework on seven clinical datasets on predicting time until death as well as hospital ICU length of stay, where we find that neural survival-supervised topic models achieve competitive accuracy with existing approaches while yielding interpretable clinical topics that explain feature relationships. Our code is available at: https://github.com/georgehc/survival-topics

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.