Abstract

The aim of this investigation was to elucidate if neural synchrony forms part of the spike time-based theory for coding of sound information in the ventral cochlear nucleus (VCN) of the auditory brainstem. Previous research attempts to quantify the degree of neural synchrony at higher levels of the central auditory system have indicated that synchronized firing of neurons during presentation of an acoustic stimulus could play an important role in coding complex sound features. However, it is unknown whether this synchrony could in fact arise from the VCN as it is the first station in the central auditory pathway. Cross-correlation analysis was conducted on 499 pairs of multiunit clusters recorded in the urethane-anesthetized rat VCN in response to pure tones and combinations of two tones to determine the presence of neural synchrony. The shift predictor correlogram was used as a measure for determining the synchrony owing to the effects of the stimulus. Without subtraction of the shift predictor, over 65% of the pairs of multiunit clusters exhibited significant correlation in neural firing when the frequencies of the tones presented matched their characteristic frequencies (CFs). In addition, this stimulus-evoked neural synchrony was dependent on the physical distance between electrode sites, and the CF difference between multiunit clusters as the number of correlated pairs dropped significantly for electrode sites greater than 800 µm apart and for multiunit cluster pairs with a CF difference greater than 0.5 octaves. However, subtraction of the shift predictor correlograms from the raw correlograms resulted in no remaining correlation between all VCN pairs. These results suggest that while neural synchrony may be a feature of sound coding in the VCN, it is stimulus induced and not due to intrinsic neural interactions within the nucleus. These data provide important implications for stimulation strategies for the auditory brainstem implant, which is used to provide functional hearing to the profoundly deaf through electrical stimulation of the VCN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.