Abstract

Human altruistic behaviors are heterogeneous across both contexts and people, whereas the neural signatures underlying the heterogeneity remain to be elucidated. To address this issue, we examined the neural signatures underlying the context- and person-dependent altruistic punishment, conjoining event-related fMRI with both task-based and resting-state functional connectivity (RSFC). Acting as an impartial third party, participants decided how to punish norm violators either alone or in the presence of putative others. We found that the presence of others decreased altruistic punishment due to diffusion of responsibility. Those behavioral effects paralleled altered neural responses in the dorsal anterior cingulate cortex (dACC) and putamen. Further, we identified modulation of responsibility diffusion on task-based functional connectivity of dACC with the brain regions implicated in reward processing (i.e., posterior cingulate cortex and amygdala/orbital frontal cortex). Finally, the RSFC results revealed that (i) increased intrinsic connectivity strengths of the putamen with temporoparietal junction and dorsolateral PFC were associated with attenuated responsibility diffusion in altruistic punishment and (ii) increased putamen-dorsomedial PFC connectivity strengths were associated with reduced responsibility diffusion in self-reported responsibility. Taken together, our findings elucidate the context- and person-dependent altruistic behaviors as well as associated neural substrates and thus provide a potential neurocognitive mechanism of heterogeneous human altruistic behaviors. Hum Brain Mapp 38:5535-5550, 2017. © 2017 Wiley Periodicals, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call