Abstract
In this paper, the feature representation of an image by CNN is used to hide the secret image into the cover image. The style of the cover image hides the content of the secret image and produce a stego image using Neural Style Transfer (NST) algorithm, which resembles the cover image and also contains the semantic content of secret image. The main technical contributions are to hide the content of the secret image in the in-between hidden layered style features of the cover image, which is the first of its kind in the present state-of-art-technique. Also, to recover the secret image from the stego image, destylization is done with the help of conditional generative adversarial networks (GANs) using Residual in Residual Dense Blocks (RRDBs). Further, stego images from different layer combinations of content and style features are obtained and evaluated. Evaluation is based on the visual similarity and quality loss between the cover-stego pair and the secret-reconstructed secret pair of images. From the experiments, it has been observed that the proposed algorithm has 43.95 dB Peak Signal-to-Noise Ratio (PSNR)), .995 Structural Similarity Index (SSIM), and .993 Visual Information Fidelity (VIF) for the ImageNet dataset. The proposed algorithm is found to be more robust against StegExpose than the traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.