Abstract

The advances in stem cell biology hold a great potential to treat retinal degeneration. Importantly, specific cell types can be generated efficiently with small molecules and maintained stably over numerous passages. Here, we investigated whether neural stem cell (NSC) derived from human embryonic stem cells (hESC) by small molecules can preserve vision following grafting into the Royal College Surgeon (RCS) rats; a model for retinal degeneration. A cell suspension containing 3 × 104 NSCs or NSCs labeled with green fluorescent protein (GFP) was injected into the subretinal space or the vitreous cavity of RCS rats at postnatal day (P) 22; animals injected with cell-carry medium and those left untreated were used as controls. The efficacy of treatment was evaluated by testing optokinetic response, recording luminance threshold, and examining retinal histology. NSCs offered significant preservation of both photoreceptors and visual function. The grafted NSCs survived for long term without evidence of tumor formation. Functionally, NSC treated eyes had significantly better visual acuity and lower luminance threshold than controls. Morphologically, photoreceptors and retinal connections were well preserved. There was an increase in expression of cillary neurotrophic factor (CNTF) in Müller cells in the graft-protected retina. This study reveals that NSCs derived from hESC by small molecules can survive and preserve vision for long term following subretinal transplantation in the RCS rats. These cells migrate extensively in the subretinal space and inner retina; there is no evidence of tumor formation or unwanted changes after grafting into the eyes. The NSCs derived from hESC by small molecules can be generated efficiently and provide an unlimited supply of cells for the treatment of some forms of human outer retinal degenerative diseases. The capacity of NSCs migrating into inner retina offers a potential as a vehicle to delivery drugs/factors to treat inner retinal disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.