Abstract

Recommender systems help users deal with information overload and enjoy a personalized experience on the Web. One of the main challenges in these systems is the item cold-start problem which is very common in practice since modern online platforms have thousands of new items published every day. Furthermore, in many real-world scenarios, the item recommendation tasks are based on users' implicit preference feedback such as whether a user has interacted with an item. To address the above challenges, we propose a probabilistic modeling approach called Neural Semantic Personalized Ranking (NSPR) to unify the strengths of deep neural network and pairwise learning. Specifically, NSPR tightly couples a latent factor model with a deep neural network to learn a robust feature representation from both implicit feedback and item content, consequently allowing our model to generalize to unseen items. We demonstrate NSPR's versatility to integrate various pairwise probability functions and propose two variants based on the Logistic and Probit functions. We conduct a comprehensive set of experiments on two real-world public datasets and demonstrate that NSPR significantly outperforms the state-of-the-art baselines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.