Abstract
We examined the sequence of neural responses to the hypotension, bradycardia, and apnea evoked by intravenous administration of 5-hydroxytryptamine (serotonin). Functional magnetic resonance imaging signal changes were assessed in nine isoflurane-anesthetized cats during baseline and after a bolus intravenous low dose (10 microg/kg) or high dose (20-30 microg/kg) of 5-hydroxytryptamine. In all cats, high-dose challenges elicited rapid-onset, transient signal declines in the intermediate portion of the solitary tract nucleus, caudal midline and caudal and rostral ventrolateral medulla, and fastigial nucleus of the cerebellum. Slightly delayed phasic declines appeared in the dentate and interpositus nuclei and dorsolateral pons. Late-developing responses also emerged in the solitary tract nucleus, parapyramidal region, periaqueductal gray, spinal trigeminal nucleus, inferior olivary nucleus, cerebellar vermis, and fastigial nucleus. Amygdala and hypothalamic sites showed delayed and prolonged signal increases. Intravenous serotonin infusion recruits cerebellar, amygdala, and hypothalamic sites in addition to classic brain stem cardiopulmonary areas and exhibits site-specific temporal patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.