Abstract

To support reward-based decision-making, the brain must encode potential outcomes both in terms of their incentive value and their probability of occurrence. Recent research has made it clear that the brain bears multiple representations of reward magnitude, meaning that a single choice option may be represented differently-and even inconsistently-in different brain areas. There are some hints that the same may be true for reward probability. Preliminary evidence hints that, even as systematic distortions of probability are expressed in behavior, these may not always be uniformly reflected at the neural level: Some neural representations of probability may be immune from such distortions. This study provides new evidence consistent with this possibility. Participants in a behavioral experiment displayed a classic "illusion of control," providing higher estimates of reward probability for gambles they had chosen than for identical gambles that were imposed on them. However, an fMRI study of the same task revealed that neural prediction error signals, arising when gamble outcomes were revealed, were unaffected by the illusion of control. The resulting behavioral-neural dissociation reinforces the case for multiple, inconsistent internal representations of reward probability, while also prompting a reinterpretation of the illusion of control effect itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.