Abstract

Collective self-esteem (CSE) is an important personality variable, defined as self-worth derived from membership in social groups. A study explored the neural basis of CSE using a task-based functional magnetic resonance imaging (fMRI) paradigm; however, task-independent neural basis of CSE remains to be explored, and whether the CSE neural basis of resting-state fMRI is consistent with that of task-based fMRI is unclear. We built support vector regression (SVR) models to predict CSE scores using topological metrics measured in the resting-state functional connectivity network (RSFC) as features. Then, to test the reliability of the SVR analysis, the activation pattern of the identified brain regions from SVR analysis was used as features to distinguish collective self-worth from other conditions by multivariate pattern classification in task-based fMRI dataset. SVR analysis results showed that leverage centrality successfully decoded the individual differences in CSE. The ventromedial prefrontal cortex, anterior cingulate cortex, posterior cingulate gyrus, precuneus, orbitofrontal cortex, posterior insula, postcentral gyrus, inferior parietal lobule, temporoparietal junction, and inferior frontal gyrus, which are involved in self-referential processing, affective processing, and social cognition networks, participated in this prediction. Multivariate pattern classification analysis found that the activation pattern of the identified regions from the SVR analysis successfully distinguished collective self-worth from relational self-worth, personal self-worth and semantic control. Our findings revealed CSE neural basis in the whole-brain RSFC network, and established the concordance between leverage centrality and the activation pattern (evoked during collective self-worth task) of the identified regions in terms of representing CSE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call