Abstract
Neural relation extraction discovers semantic relations between entities from unstructured text using deeplearning methods. In this study, we make a clear categorization of the existing relation extraction methods in termsof data expressiveness and data supervision, and present a comprehensive and comparative review. We describe theevaluation methodologies and the datasets used for model assessment. We explicitly state the common challenges inrelation extraction task and point out the potential of the pretrained models to solve them. Accordingly, we investigateadditional research directions and improvement ideas in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.