Abstract

BackgroundBone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. The gutless females (and in one species also the males) have a unique root system that penetrates the bone and nourishes them via endosymbiotic bacteria. Emerging from the bone is a cylindrical trunk, which is enclosed in a transparent tube, that generally gives rise to a plume of four palps (or tentacles). In most Osedax species, dwarf males gather in harems along the female’s trunk and the nervous system of these microscopic forms has been described in detail. Here, the nervous system of bone-eating Osedax forms are described for the first time, allowing for hypotheses on how the abberant ventral brain and nervous system of Siboglinidae may have evolved from a ganglionated nervous system with a dorsal brain, as seen in most extant annelids.ResultsThe intraepidermal nervous systems of four female Osedax spp. and the bone-eating O. priapus male were reconstructed in detail by a combination of immunocytochemistry, CLSM, histology and TEM. They all showed a simple nervous system composed of an anterior ventral brain, connected with anteriorly directed paired palp and gonoduct nerves, and four main pairs of posteriorly directed longitudinal nerves (2 ventral, 2 ventrolateral, 2 sets of dorso-lateral, 2 dorsal). Transverse peripheral nerves surround the trunk, ovisac and root system. The nervous system of Osedax resembles that of other siboglinids, though possibly presenting additional lateral and dorsal longitudinal nerves. It differs from most Sedentaria in the presence of an intraepidermal ventral brain, rather than a subepidermal dorsal brain, and by having an intraepidermal nerve cord with several plexi and up to three main commissures along the elongated trunk, which may comprise two indistinct segments.ConclusionsOsedax shows closer neuroarchitectural resemblance to Vestimentifera + Sclerolinum (= Monilifera) than to Frenulata. The intraepidermal nervous system with widely separated nerve cords, double brain commissures, double palp nerves and other traits found in Osedax can all be traced to represent ancestral states of Siboglinidae. A broader comparison of the nervous system and body regions across Osedax and other siboglinids allows for a reinterpretation of the anterior body region in the group.

Highlights

  • Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls

  • With the present paper we aim to describe the adult nervous system of bone-eating Osedax forms, covering the possible variation across four species, visualized with immunoreactivity (IR) of the cytoskeleton and two neurotransmitters gathered with confocal laser scanning microscopy

  • General composition of nervous system The female neuoarchitecture is highly similar among the four examined species of Osedax (Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9), whereas the large-sized O. priapus male deviates slightly, following its anatomical differences [29] (Fig. 3)

Read more

Summary

Introduction

Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. In most Osedax species, dwarf males gather in harems along the female’s trunk and the nervous system of these microscopic forms has been described in detail. Siboglinidae is a group of annelids including Frenulata, Vestimentifera and Sclerolinum (the latter two referred to here as Monilifera, see Rouse 2001 [1]) that can be found at deep-sea reduced environments such as hydrothermal vents and cold-water sulfide/hydrocarbon seeps [2,3,4]. The females possess an elongated trunk with four anterior appendages (termed palps or tentacles, here referred to as palps) and a unique posterior branching structure, a so-called root system, which penetrates the bones and house bacteriocytes [6]. Within Siboglinidae, Osedax was initially found to be sister group to Monilifera (Vestimentifera + Sclerolinum) [6, 25,26,27]. Some recent analyses [28, 29] have placed Osedax as closer to Frenulata, but the placement with Monilifera seems well supported [27]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call