Abstract

Predicting the performance of a search engine for a given query is a fundamental and challenging task in information retrieval. Accurate performance predictors can be used in various ways, such as triggering an action, choosing the most effective ranking function per query, or selecting the best variant from multiple query formulations. In this paper, we propose a general end-to-end query performance prediction framework based on neural networks, called NeuralQPP. Our framework consists of multiple components, each learning a representation suitable for performance prediction. These representations are then aggregated and fed into a prediction sub-network. We train our models with multiple weak supervision signals, which is an unsupervised learning approach that uses the existing unsupervised performance predictors using weak labels. We also propose a simple yet effective component dropout technique to regularize our model. Our experiments on four newswire and web collections demonstrate that NeuralQPP significantly outperforms state-of-the-art baselines, in nearly every case. Furthermore, we thoroughly analyze the effectiveness of each component, each weak supervision signal, and all resulting combinations in our experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call