Abstract
When people listen to speech and other natural sounds, their brains must take in a noisy acoustic signal and transform it into a robust mapping that eventually helps them communicate and understand the world around them. People hear what was said, who said it, and how they said it, and each of these aspects is encoded in brain activity across different auditory regions. Intracranial recordings in patients with epilepsy, also called electrocorticography or stereoelectroencephalography, have provided a unique window into understanding these processes at a high spatiotemporal resolution. These intracranial recordings are typically performed during clinical treatment for drug-resistant epilepsy or to monitor brain function during neurosurgery. The access to direct recordings of activity in the human brain is a benefit of this method, but it comes with important caveats. Research using intracranial recordings has uncovered how the brain represents acoustic information, including frequency, spectrotemporal modulations, and pitch, and how that information progresses to more complex representations, including phonological information, relative pitch, and prosody. In addition, intracranial recordings have been used to uncover the role of attention and context on top-down modification of perceptual information in the brain. Finally, research has shown both overlapping and distinct brain responses for speech and other natural sounds such as music.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.