Abstract

This study investigated the preparatory control of motor inhibition and motor execution using a stop signal task (SST) and functional magnetic resonance imaging (fMRI). In the SST, a frequent "go" signal triggered a prepotent response and a less frequent "stop" signal prompted the inhibition of this response. Preparatory control of motor inhibition and execution in the stop signal trials were examined by contrasting brain activation between stop success and stop error trials during the fore-period, in which participants prepared to respond to go or to stop. Results from 91 healthy adults showed greater activation in the right prefrontal cortex and inferior parietal lobule during preparatory motor inhibition. Preparatory motor execution activated bilateral putamen, primary motor cortices, posterior cingulate cortex, ventromedial prefrontal cortex, and superior temporal/intraparietal sulci. Furthermore, the extents of these inhibition and execution activities were inversely correlated across subjects. On the basis of a median split of the stop signal reaction time (SSRT), subjects with short SSRT showed greater activity in the right orbital frontal cortex during preparatory inhibition. These new findings suggest that the go and stop processes interact prior to target presentation in the SST, in accord with recent computational models of stop signal inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.