Abstract

Posttraumatic growth (PTG) is the advantageous change some people report following the struggle to overcome traumatic life circumstances. As neural understanding of PTG is limited, debate persists regarding whether PTG represents “real” or “illusory” change. This study presents a novel supervised machine learning examination, predicting high versus low PTG from electroencephalographic (EEG) data collected from 66 trauma-exposed individuals. Alpha and gamma EEG frequency power accurately classified PTG and demonstrated the disruptive neural influence of posttraumatic stress disorder. Results provide objectively measurable neural evidence of the existence of PTG and the first whole-brain, high-density EEG scalp topographies of PTG in known literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.