Abstract
Path planning is critical for planetary rovers that perform observation and exploration missions in unknown and dangerous environment. And due to the communication delay, it is difficult for the planet rover to receive instructions from Earth in time to guide its own movement. In this work, we present a novel neural network-based algorithm to solve the global path planning problem for planetary rovers. Inspired by feature pyramid networks used for object detection, we construct a deep neural network model, termed the Pyramid Path Planning Network (P3N), which has a well-designed backbone that efficiently learns a global feature representation of the environment, and a feature pyramid branch that adaptively fuses multi-scale features from different levels to generate the local feature representation with rich semantic information. The P3N learns environmental dynamics from terrain images of planetary surface taken by satellites, without using additional elevation information to construct an explicit environmental model in advance, and can perform path planning policy after end-to-end training. We evaluate the effectiveness of the proposed method on synthetic grid maps and a realistic data set constructed from the lunar terrain images. Experimental results demonstrate that our P3N has higher prediction accuracy and faster computation speed compared to the baseline methods, and generalize better in large-scale environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.