Abstract

In this paper a neural network secondary structure prediction algorithm is presented. A novel input encoding, based on multidimensional scaling applied to a modified Percent Accepted Mutation amino acid substitution matrix, is developed and shown to be superior to an arbitrary input encoding. Both decimal valued and binary input encodings are compared. Two neural network learning algorithms, Resilient Propagation and Learning Vector Quantization, which have not previously been applied to the problem of protein secondary structure prediction, are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.