Abstract
Time-varying linear complementarity problem (TLCP) has received a great deal of attention due to its broad variety of scientific and engineering applications. Several efficient Zhang neural networks are introduced for solving TLCP in this paper. Theoretical analysis shows that the related error function of the model proposed in this paper eventually tends to zero. The state convergence time periods of those Zhang neural networks with three types of activation functions are proved to be finite and can be quantitatively estimated by using some given parameters. Further, it is shown that the proposed neural network is of noise-tolerance, which means the neural network is more appropriate for a wider application. Moreover, in order to implement neural network numerically, a related discrete-time version is also studied. Finally, numerical simulations confirm the analysis of the proposed models concretely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.