Abstract

Quantitatively describing the signal transduction process is important for understanding the mechanism of signal regulation in cells, and thus, poses both a challenge and an opportunity for chemical and biochemical engineers. An artificial neural network (ANN), in which we took the signal molecules as neural nodes, was constructed to simulate the generation of active oxygen species (AOS) in Taxus chinensis cells induced by a bio-elicitor. The relative contents of AOS in cells predicted by the ANN model agreed well with the experimental data and three notable stages of AOS increase were observed from the 3D figure of AOS generation. The robustness of AOS trajectories indicated that signal regulation in vivo was an integral feedback control model that ensured the adaptation of Taxus chinensis to environmental stress. The artificial neural network was able to predict taxol production as well as determine the optimal concentration of oligosaccharides needed for it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.