Abstract

In laminated composite materials design, optimization mainly targets the stacking sequence configuration, which is defined by the lamina thickness and fiber orientations within each layer. Recent studies emphasize the increasing role of Machine Learning in promoting innovative composite designs by facilitating the accurate modeling of essential properties such as strength and stiffness. This study introduces two metamodels that utilize feed-forward artificial neural networks, taking laminate thickness and fiber steering angles as input parameters. The output variables, including strain energy density and the Tsai-Wu failure index, enable the prediction of stacking sequence configurations for laminated materials, a capability confirmed in a case study. The results showcase neural network models with the ability to predict these variables, achieving coefficients of determination above 0.90 for testing data. Consequently, this modeling approach has the potential to be a tool for designers, aiding in decision-making processes for the subsequent optimization of stiffness and strength in structural components made of laminated composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.