Abstract

It is known that the supervision and learning of robotic executions is not a trivial problem. Nowadays, robots must be able to tolerate and predict internal failures in order to successfully continue performing their tasks. This study presents a novel approach for prediction of robot execution failures based on neural networks. Real data consisting of robot forces and torques recorded immediately after the system failure are used for the neural network training. The multilayer feedforward neural networks are employed in order to find optimal solution for the failure prediction problem. In total, 7 learning algorithms and 24 neural architectures are implemented in two environments – Matlab and specially designed software titled BPnet. The results show that the neural networks can successfully be applied for the problem in hand with prediction rate of 95.4545%, despite having the erroneous or otherwise incomplete sensor measurements invoked in the dataset. Additionally, the real-world experiments are conducted on a mobile robot for obstacle detection and trajectory tracking problems in order to prove the robustness of the proposed prediction approach. In over 96% for the detection problem and 99% for the tracking experiments, neural network successfully predicted the failed information, which evidences the usefulness and the applicability of the developed intelligent method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.