Abstract

We demonstrate the use of neural networks to accelerate the reaction steps in the MAESTROeX stellar hydrodynamics code. A traditional MAESTROeX simulation uses a stiff ODE integrator for the reactions; here, we employ a ResNet architecture and describe details relating to the architecture, training, and validation of our networks. Our customized approach includes options for the form of the loss functions, a demonstration that the use of parallel neural networks leads to increased accuracy, and a description of a perturbational approach in the training step that robustifies the model. We test our approach on millimeter-scale flames using a single-step, 3-isotope network describing the first stages of carbon fusion occurring in Type Ia supernovae. We train the neural networks using simulation data from a standard MAESTROeX simulation, and show that the resulting model can be effectively applied to different flame configurations. This work lays the groundwork for more complex networks, and iterative time-integration strategies that can leverage the efficiency of the neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.