Abstract
Maximum deflection in a beam is a design criteria and occurs generally at or close to the mid-span. Neural networks have been developed for the continuous composite beams to predict the inelastic mid-span deflections (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage, in concrete) from the elastic moments and elastic mid-span deflections (neglecting instantaneous cracking and time effects). The training and testing data for the neural networks is generated using a hybrid analytical-numerical procedure of analysis. The neural networks have been validated for four example beams and the errors are shown to be small. This methodology, of using networks enables a rapid estimation of inelastic mid-span deflections and requires a computational effort almost equal to that required for the simple elastic analysis. The neural networks can be extended for the composite building frames that would result in huge saving in computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.