Abstract

This paper presents an application of neural networks in pattern recognition of defects in sonic signals from non-destructive evaluation by multichannel impact-echo. The problem approached consists in allocating parallelepiped-shape materials in four levels of classifications defining material condition (homogeneous or defective), kind of defects (holes and cracks), defect orientation, and defect dimension. Various signal features as centroid frequency, attenuation and amplitude of the principal frequency are estimated per channel and processed by PCA and feature selection methods to reduce dimensionality. Results for simulations and experiments applying Radial Basis Function, Multilayer Perceptron and Linear Vector Quantization neural networks are presented. Neural networks obtain good performance in classifying several 3D finite element models and specimens of aluminum alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.