Abstract

We train several neural networks and boosted decision trees to discriminate fully-hadronic boosted di-τ topologies against background QCD jets, using calorimeter and tracking information. Boosted di-τ topologies consisting of a pair of highly collimated τ-leptons, arise from the decay of a highly energetic Standard Model Higgs or Z boson or from particles beyond the Standard Model. We compare the tagging performance for different neural-network models and a boosted decision tree, the latter serving as a simple benchmark machine learning model. The code used to obtain the results presented in this paper is available on GitHub.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.