Abstract

The cooperative control problem of nonlinear multiagent systems is studied in this paper. The followers in the communication network are subject to unmodeled dynamics. A fully distributed neural-networks-based adaptive control strategy is designed to guarantee that all the followers are asymptotically synchronized to the leader, and the synchronization errors are within a prescribed level, where some global information, such as minimum and maximum singular value of graph adjacency matrix, is not necessarily to be known. Based on the Lyapunov stability theory and algebraic graph theory, the stability analysis of the resulting closed-loop system is provided. Finally, an numerical example illustrates the effectiveness and potential of the proposed new design techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.