Abstract
This paper deals with the application of neural networks to design intelligent nonlinear predictive controllers. Predictive controllers are now widely used in many industrial applications. They have been used for linear systems in early applications and then some methods based on predictive control theory were proposed to govern the dynamics of nonlinear systems. In this paper, we will make use of multi-layer perceptron neurofuzzy models with Locally Linear Model Tree (LoLiMoT) learning algorithm as a part of intelligent predictive control system, which has shown excellent performance in identifying of nonlinear systems. The nonlinear dynamics of the system is identified using the neural network based method and then the identified model is used as a part of predictive control algorithm. The proposed method is used to solve the control problems in some benchmark systems. As a first study, the viscosity control in a Continuous Stirred Tank Reactor (CSTR) plant is considered. The mathematical model of the plant is used to generate the input output data set and then the dynamic behavior of the system is identified using a proper multi-layer perceptron neural network, which is used in the predictive control loop. Also, the predictive control based on the locally linear neurofuzzy model is applied to temperature control of an electrically heated micro heat exchanger. The dynamic behavior of the heat exchanger is identified based on some experimental data of the real plant. Comparing the identification results obtained by the neurofuzzy model with those of some linear models such as ARX and BJ, confirms the superior performance for the locally linear neurofuzzy model. Then, the predictive control is applied to the identified model to obtain a satisfactory performance in the output temperature that should track a desired reference signal. As another application, the algorithm is applied to temperature control of a solution polymerization methyl methacrylate in a batch reactor. The results show also somehow satisfactory performance for this highly nonlinear system. All the simulation results reveal the effectiveness of the proposed intelligent control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wavelets, Multiresolution and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.