Abstract
This paper models the learning process of a population of randomly-rematched tabula rasa neural network agents playing randomly generated 3 × 3 normal form games of all strategic types. Evidence was found of the endogenous emergence of a similarity measure of games based on the number and types of Nash equilibria, and of heuristics that have been found effective in describing human behavior in experimental one-shot games. The neural network agents were found to approximate experimental human behavior very well across various dimensions such as convergence to Nash equilibria, equilibrium selection and adherence to principles of dominance and iterated dominance. This is corroborated by evidence from five studies of experimental one-shot games, as the Spearman correlation coefficients of the probability distribution over the neural networks’ and human subjects’ actions ranged from 0.49 to 0.89.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.