Abstract

Signal processing techniques are currently being developed by engineers and analysts to exploit subtle radar phenomena. Research efforts at the Georgia Tech Research Institute, sponsored by the U.S. Air Force, have been directed toward the collection and analysis of data on some of the more subtle characteristics of signals from complex domestic radar systems. Analysis efforts have included both classical and emerging techniques. Applying classical statistical methods of analysis to Georgia Tech's data base on such characteristics, analysts have obtained encouraging results in many areas of radar signal processing. There remain, however, areas involving slowly changing characteristics where an adaptive capability could be critical, particularly in the dense electromagnetic environments that can be anticipated. Recent rapid advances in neural network techniques, when accompanied by advances in parallel processing hardware that will be needed to implement the networks for future field use, have resulted in the potential to provide this adaptability to changing parametric conditions. To assess that potential, the U.S. Air Force initiated two separate programs at the Georgia Tech Research Institute. Results from one program include an evaluation of a number of neural network paradigms for their appropriateness for processing radar waveforms to extract subtle information contained there. Test results using selected neural networks with various forms of collected data are presented. Results from another ongoing effort include a discussion of an effort to implement in hardware one of the neural networks tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.