Abstract
The lifetime of power transformers is closely related to the insulating oil performance. This latter can degrade according to overheating, electric arcs, low or high energy discharges, etc. Such degradation can lead to transformer failures or breakdowns. Early detection of these problems is one of the most important steps to avoid such failures. More efficient diagnostic systems, such as artificial intelligence techniques, are recommended to overcome the limitations of the classical methods. This work deals with diagnosing the power transformer insulating oil by analysis of dissolved gases using new techniques. For this, we have proposed intelligent techniques based on Multilayer artificial neural networks (ANN). Thus, a multi-layer ANN-based model for fault detection is presented. To improve its classification rate, this one was optimized by a meta-heuristic technique as the particle swarm optimization (PSO) technique. Optimized ANNs have never been used in transformer insulating oil diagnostics so far. The robustness and effectiveness of the proposed model is demonstrated, and high accuracy is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.