Abstract

Universal approximation capabilities of neural networks and fuzzy basis functions are given in this chapter using the Stone-Weierstrass theorem, Kolmogorov’s theorem and functional analysis methods. This study focuses on few commonly-used neural networks such as multilayered feedforward neural networks (MFNNs) with sigmoidal activation functions, trigonometric networks, higher-order neural networks, Gaussian radial basis function networks, and fuzzy basis function networks. The results show that an arbitrary continuous function on a compact set may be approximated to any degree of accuracy by such a neural network or fuzzy system. However, the accuracy of the approximations is strongly related to the design of the learning phases of the network parameters. The theory presented in this chapter provides a theoretical basis for applications to the fields of identification, control and pattern recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.