Abstract

Researchers have known for some time that nonlinearity exists in the financial markets and that neural networks can be used to forecast market returns. Unfortunately, many of these studies fail to consider alternative forecasting techniques, or the relevance of the input variables. The following research utilizes an information-gain technique from machine learning to evaluate the predictive relationships of numerous financial and economic input variables. Neural network models for level estimation and classification are then examined for their ability to provide an effective forecast of future values. A cross-validation technique is also employed to improve the generalization ability of the models. The results show that the classification models generate higher accuracy in forecasting ability than the buy-and-hold strategy, as well as those guided by the level-estimation-based forecasts of the neural network and benchmark linear regression models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.