Abstract
A robust tracking controller with bound estimation based on neural network is proposed to deal with the unknown factors of nonholonomic mobile robot, such as model uncertainties and external disturbances. The neural network is to approximate the uncertainties terms and the interconnection weights of the neural network can be tuned online. And the robust controller is designed to compensate for the approximation error. Moreover, an adaptive estimation algorithm is employed to estimate the bound of the approximation error. The stability of the proposed controller is proven by Lyapunov function. The proposed neural network-based robust tracking controller can overcome the uncertainties and the disturbances. The simulation results demonstrate that the proposed method has good robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.