Abstract

This paper addresses the challenging problem of bipartite consensus tracking of multi-agent systems that are subject to compound uncertainties and actuator faults. Specifically, the study considers a leader agent with fractional-order nonlinear dynamics unknown to the followers. In addition, both cooperative and competitive interactions among agents are taken into account. To tackle these issues, the proposed approach employs a fully distributed robust bipartite consensus tracking controller, which integrates a neural network approximator to estimate the uncertainties of the leader and the followers. The adaptive laws of neural network parameters are continuously updated online based on the bipartite consensus tracking error. Furthermore, an adaptive control technique is utilized to generate the fault-tolerant component to mitigate the partial loss caused by actuator effectiveness faults. Compared with the existing works on nonlinear multi-agent systems, we consider the compound uncertainties, actuator faults and cooperative–competition interactions simultaneously. By implementing the proposed control scheme, the robustness of the closed-loop system can be significantly improved. Finally, numerical simulations are performed to validate the effectiveness of the control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call