Abstract

Finding an arrangement, leading to a higher heat transfer and lower pressure drop, is crucial in the design of heat exchangers. Previous studies have primarily focused on regular arrangements with uniform pitch distances, which lack applicability to general configurations. In this study, we proposed a new procedure of a flow-learned building block (FLBB) to predict heat transfer in an in-line cylinder array with random pitch distances using a neural network-based regression analysis with a systematic data generation process. As a first step, we demonstrated the FLBB’s capability to predict the heat transfer and pressure drop in in-line cylinder arrays with random pitch distances at low Reynolds numbers from 1 to 100 for air ( ). Subsequently, a high-order FLBB approach was proposed to address the spatial interdependency between neighbouring cylinders, particularly in scenarios where vortex shedding occurs in the wake of cylinders at increased Reynolds numbers. The high-order FLBB approach was then shown to successfully describe various flow and temperature patterns using cylinder arrays with random pitch distances. The proposed procedure exhibited remarkable efficiency, requiring only about 1 s. Furthermore, the FLBB was successfully extended to various flow regimes, even encompassing unseen Reynolds numbers from 1 to 100.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.