Abstract
Knowledge transfer (KT) is crucial for optimizing tasks in evolutionary multitask optimization (EMTO). However, most existing KT methods can only achieve superficial KT but lack the ability to deeply mine the similarities or relationships among different tasks. This limitation may result in negative transfer, thereby degrading the KT performance. As the KT efficiency strongly depends on the similarities of tasks, this article proposes a neural network (NN)-based KT (NNKT) method to analyze the similarities of tasks and obtain the transfer models for information prediction between different tasks for high-quality KT. First, NNKT collects and pairs the solutions of multiple tasks and trains the NNs to obtain the transfer models between tasks. Second, the obtained NNs transfer knowledge by predicting new promising solutions. Meanwhile, a simple adaptive strategy is developed to find the suitable population size to satisfy various search requirements during the evolution process. Comparison of the experimental results between the proposed NN-based multitask optimization (NNMTO) algorithm and some state-of-the-art multitask algorithms on the IEEE Congress on Evolutionary Computation (IEEE CEC) 2017 and IEEE CEC2022 benchmarks demonstrate the efficiency and effectiveness of the NNMTO. Moreover, NNKT can be seamlessly applied to other EMTO algorithms to further enhance their performances. Finally, the NNMTO is applied to a real-world multitask rover navigation application problem to further demonstrate its applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.