Abstract

In this contribution, the identification problem for the control of nonlinear simulated moving bed (SMB) chromatographic processes is addressed. For process control the flow rates of extract, desorbent, and recycle of the SMB process, and the switching time are the manipulated variables. But these variables influence the process in a strongly coupled manner. Therefore, a new set of input variables is introduced by a nonlinear transformation of the physical inputs, such that the couplings are reduced considerably. The front positions of the axial concentration profile are taken as model outputs. Multilayer feedforward neural networks (NN) are utilized as approximating models of the nonlinear input–output behavior. The gradient distribution of the model outputs with respect to the inputs is used to determine their structural parameters and the network size is chosen by the SVD method. To illustrate the effectiveness of the identification method, a laboratory scale SMB process is used as an example. The simulation results of the identified model confirm a very good approximation of the first principles models and exhibit a satisfactory long-range prediction performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.