Abstract

The neural networks (NN)-based geometry classification for good or acceptable navigation satellite subset selection is presented. The approach is based on classifying the values of satellite Geometry Dilution of Precision (GDOP) utilizing the classification-type NNs. Unlike some of the NNs that approximate the function, such as the back-propagation neural network (BPNN), the NNs here are employed as classifiers. Although BPNN can also be employed as a classifier, it takes a long training time. Two other methods that feature a fast learning speed will be implemented, including Optimal Interpolative (OI) Net and Probabilistic Neural Network (PNN). Simulation results from these three neural networks are presented. The classification performance and computational expense of neural network-based GDOP classification are explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.