Abstract
Stress Concentration Factor (SCF) is used as a reference to quantify the peak stress in welded tubular joints for fatigue assessment. At present, complex equations are available for calculating SCFs at selected locations of the brace-chord intersection curve of tubular joints for individual load cases. This paper presents an alternative approach to calculate SCF distribution along the intersection curve of tubular X-joints using neural networks. An SCF database based on the results of 300 finite element (FE) models was used to train and test the neural networks. Neural networks trained by these FE results were found to provide close predictions of the SCF distributions under each independent loading as well as combined loadings. Based on the parametric study it can be concluded that properly trained and well calibrated neural networks can be reliable alternatives to complicated SCF equations for predicting SCF at selected critical locations or along the brace-chord intersection curve of tubular joints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.