Abstract
The explosive growth of biomedical literature has created a rich source of knowledge, such as that on protein-protein interactions (PPIs) and drug-drug interactions (DDIs), locked in unstructured free text. Biomedical relation classification aims to automatically detect and classify biomedical relations, which has great benefits for various biomedical research and applications. In the past decade, significant progress has been made in biomedical relation classification. With the advance of neural network methodology, neural network-based approaches have been applied in biomedical relation classification and achieved state-of-the-art performance for some public datasets and shared tasks. In this review, we describe the recent advancement of neural network-based approaches for classifying biomedical relations. We summarize the available corpora and introduce evaluation metrics. We present the general framework for neural network-based approaches in biomedical relation extraction and pretrained word embedding resources. We discuss neural network-based approaches, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We conclude by describing the remaining challenges and outlining future directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.