Abstract
In this paper, the design of a neural network (NN) based adaptive model-based event-triggered control of an uncertain single input single output (SISO) nonlinear discrete time system in affine form is presented. The controller uses an adaptive estimator consisting of a single-layer NN not only to approximate the internal dynamics of an affine nonlinear discrete-time system but also to provide an estimate of the state vector during inter event interval. The NN weights of the adaptive NN estimator are tuned in a aperiodic manner at the event trigger instants unlike periodic updates in standard adaptive neural network (NN) control. A dead zone operator is used to reset the event trigger error to zero as long as the system states continue to remain in a bounded region due to NN reconstruction errors. Lyapunov method is used to derive the event trigger condition, prove uniform ultimate boundedness (UUB) of the NN weight estimation error and system states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.