Abstract
Web services have several Quality of Service (QoS) properties. Some of the QoS parameters for web services are availability, response time, throughput, modularity, reliability, and interoperability. A client of a web service can have several web services with similar functionality but different QoS properties for application integration. QoS properties play a decisive factor in selecting the best web services from amongst services having similar functionality. Often QoS parameters are not available, not easy to compute or outdated. We present a method to estimate the QoS parameters of web services from the information contained in web service interfaces. We propose a method based on extracting several data, procedural and structural quantity metrics from the web service interfaces and using them as predictors for estimating the QoS properties. We apply neural network method with 6 different training methods for building a predictive model. Our results demonstrate that the proposed approach is effective. Our experimental results reveal that the structural quality metrics outperforms the procedural and data quality metrics in-terms of the RMSE (Root-Mean-Square Error) performance metric. We conclude that the NLM method (Neural Network with Levenberg-Marquardt training method) out performs five other popular neural network training methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.